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1. INTRODUCTION

The class of logical algebras including BC K-algebras (Iséki and Tanaka [1]),
BCT-algebras (Iséki [2]), BCH-algebras (Hu and Li [3]), BCC-algebras (Dudek
[1]), @S-algebras (Ahn and Kim [5]), Q-algebras (Negger et al. [0]), BE-algebras
(Kim and Kim [7]), and U P-algebras (Iampan [3]) are collectively referred to as
Boolean-like algebras and serve as a foundational framework in digital circuit design
and theoretical computer science.

In particular, Prabpayak and Leerawat [9] introduced a new algebraic structure
called a KU -algebra and investigated some of its properties. Further developments
on KU-algebras can be found in [10, 11, 12, 13, 14, 15, 16, 17]. More recently,
in 2024, Ansari and Koam [18] examined several properties of modules over KU-
algebras. Additionally, Beak et al. [19] introduced the notion of I'-KU-algebras as
a generalization of K U-algebras and explored various structural aspects.

On another front, Sheffer [20] first introduced an operation known as the Sheffer
stroke on a set X (see also [21, 22]). Utilizing the Sheffer stroke, Oner et al. [23]
defined and analyzed Sheffer stroke-commutative, positive, and implicative-positive
BC K-algebras, establishing interrelations among them (see [24, 25, 26, 27, 28]). In
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particular, Oner and Katican [29] introduced the concept of a Sheffer stroke U P-
algebra and studied homomorphisms between such structures.

In the study of logical algebras, the concept of an ideal plays a crucial role in
analyzing the structure and inherent properties of these algebras. Ideals contribute
to the simplification and optimization of digital circuits, facilitate structural analysis,
ensure logical consistency, and support a wide range of applications in computer
science and cryptography. Motivated by this, we aim to investigate the structure of
ideals in Sheffer stroke K U-algebras defined over a groupoid X.

The organization of this paper is as follows.

In Section 2, we recall some basic definitions and preliminary concepts that will be
used throughout the paper. In Section 3, we introduce the notion of an SSKU-ideal
in a SSKU-algebra and explore its fundamental properties. Section 4 is devoted
to studying the behavior of SSKU-ideals under SSKU-homomorphisms between
KU-algebras. In particular, we examine the images and preimages of SSKU-ideals
under such homomorphisms and analyze structural aspects related to the kernel
ker f of a given homomorphism f.

2. PRELIMINARIES

In this section, we recall basic fundamental concepts of a KU-algebra and a Sheffer
stroke operation, and give an Example .

Definition 2.1 ([9]). An algebra (X, x,0) of type (2,0) with a binary operation *
is called a KU -algebra, if it satisfies the following conditions: for every x, y, z € X,
(KUL) (2 59) (3 % 2) * (25 2)] =0,
(KUs) 2 %0 = 0,
(KUs) 0%z = z,
(KUy) z+y =0 =y *x implies z = y.

Remark 2.2 ([9]). (1) From (KU;) and (KUs), we have

(2.1) z+x =0 for each z € X.
(2) From (KUy), (KU,) and (KUsj), we get
(2.2) z#(x*z)=0for every z, z € X.

We define a binary relation < on X as follows: for any z, y € X,
x <yif and only if yxx =0.

Result 2.3 (See [17]). An algebra (X, *,0) is a KU-algebra if and only if it satisfies
the following conditions: for all x, y, z € X,
(KUp/) (yxz)*(xxz) <axxy,
(KUy) 0 <z,
KUy ) z <y andy <z imply x =y,
(KUy) z <y if and only if y x x = 0.
Result 2.4 (See Lemmas 2.5, 2.6 and 2.7, [17]). In X, the followings hold: for all
T, Yy, 2€X,
(1) x <y implies yx z < x x z,
(2) zx (yxx) =y (2 %),
(3) yx [(yxx) x 2] = 0.
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Definition 2.5 ([30]). A subset S of X is called a subalgebra of X, if x xy € S for
every x, y € S.

Definition 2.6 ([30]). Let I be a nonempty subset of X. Then [ is called a KU -ideal
of X, if it satisfies the following conditions: for every z, y, z € X,

(KUL) 0 € 1,

(KULy) z*xy, « € I implies y € I.

In a KU-algebra X, we define xAy = (y * z) x x for all z, y € X.

Definition 2.7. A KU-algebra X is said to be:
(i) KU-commutative [31], if it satisfies the following condition:

(2.3) (yxxz)xx = (zxy)*y, i.e., zAy = yAz for all z, y € X,

(ii) bounded [32], if there is the greatest element 1 (called the unit) of X and x 1
is denoted by N, for each x € X.

We now proceed to define the Sheffer stroke operation on the set X, originally
introduced by Chajda [21].

Definition 2.8 ([21]). Let (X, 0) be a groupoid. Then o is said to be Sheffer stroke
operation on X, if it satisfies the following conditions: for all z, y, z € X,

(S1) (Commutativity) x oy =y o x,

(S2) (Absorption) (zox)o (zoy) =z,

(Ss) wo(yez)o(yoz)] =[(xoy)o(zoy)ez,

(S4) (Absorption) [z o ((zoz)o(yoy))|ofzo((zox)o(yoy))] ==

From (S), it is obvious that
(2.4) (xox)o(xox)=ux for each z € X.

Result 2.9 (Lemma 1, [21]). Let (X,0) be a groupoid with a Sheffer stroke. We
define a binary relation < on X as follows: for all x, y € X,

(2.5) r<yifandonly if zoy=zo0x.

Then < is a partial order on X.
In this case, < is called the induced order on X.

Result 2.10 (Lemma 2, [21]). Let (X,0) be a groupoid with a Sheffer stroke and <
the induced order of X. Then for every a, =, y € X,

(1) x <y if and only if yoy = x o x,

(2) zo[yo(xox)] =xox is the identity of X,

(3) x <y impliesyoz <zoz

4)a<zanda<yimplyroy<aoa.

Definition 2.11 ([21]). A groupoid (X, o) is called a Sheffer stoke semigroup, if it
satisfies the conditions (S;)—(S4) and the following condition: for all z, y, z € X,
(Ss5) (Associativity) x o (yoz2) = (zoy)oz.

Example 2.12. (1) Let X = {0,1}, and Y = {0, 1,2} with the operations o on
X and Y, respectively. The corresponding Cayley tables for these structures are
therefore constructed as follows. Then we can easily check that each (X, o) is a

Sheffer stroke semigroup.
3
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o]0 1 2
°10 1 010 0 0
0/0 0
o 1 110 1 1
200 1 2
Table 2.1

(2) Consider the Sheffer stroke groupoid (X, o) with the following Cayley table:
Then clearly,

o|0 1
0|1 1
1{1 0
Table 2.2

(00l)ol=0#1=00(101).
Thus (X, o) is not a Sheffer stroke semigroup.

3. SHEFFER STROKE K U-ALGEBRAS

We define a Sheffer stroke KU-algebra in this section and investigate some of its
fundamental properties, accompanied by examples.

Definition 3.1. Let o be a Sheffer stroke operation on a set X. Then a Sheffer
stroke KU -algebra (briefly, SSKU-algebra) is a structure (X, o, 0) of type (2,0) with
the constant 0 € X satisfying the following axioms hold: for all z,y, z € X,
(SSKU1) [((zo(zox))o(zo(zox)))o(((20(yoy))o(yo(zox)))o((zo(yoy))o(yo (o
z))))lel((zo(zox))o(zo(zox)))o(((20(yoy))o(yo(zoz)))o((20(yoy))o(yo(zox))))] = 0,
(SSKUjy) x oz =z 0 (000),
(SSKUs) (zo(yoy))o(zo(yoy)) =0=(yo(xox))o(yo(zox)), imply z=y.
In particular, A SS-algebra X satisfying the condition (Ss) is called a associative
SS-algebra.

Example 3.2. (1) (See Example 3.1, [23]) Let X = {0,z,y,1} be the set with the

following Hasse diagram:
1
@ y
0

Consider the binary operation o on X with the following Cayley table:

o0 z y 1
0j1 1 1 1
z|1 y 1 y
y|1l 1 z =z
111 yv = O
Table 3.1

4
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Then we can easily check that (X, 0,0) is an SSKU-algebra.
(2) Consider the Cayley table for a binary operation o on X = {0, 1,2, 3}:

ol0 1 2 3
013 3 3 3
1({3 2 3 2
213 3 1 1
313 2 1 0
Table 3.2

Then (X,o0,0) is an SSKU-algebra
(3) Consider the Cayley tables for a binary operation o on X ={0,1,2,3,4,5}:

o0 1 2 3 4 5
013 3 3 3 5 5
113 2 3 2 3 2
213 3 11 1 2
313 21 0 0 0
415 3 1 0 4 4
515 2 2 0 4 0
Table 3.3

Then we can easily check that (X, o0,0) is an SSKU-algebra.

Remark 3.3. The axioms (SSKU;), (SSKU,) and (KUSS3) are independent of
each other (See Example 3.4).

Example 3.4. (1) Consider the Cayley table for a binary operation o defined on
the set X = {0,1,2,3}:

ol0 1 2 3
00 2 0 O
112 0 3 1
210 3 0 2
3|01 2 0
Table 3.4

Then we can easily see that the axiom (SSKU;) holds. on the other hand, we have
1o1=0#2=(10(000)),
(1o(202))o(10(202)=0=(20(1o1))o (20 (1o1)) but 1 £2.

Thus the axioms (SSKUs;) and (KUSS3) do not hold.

(2) Consider the Cayley table for a binary operation o defined on the set X =
{0,1,2,3}:
Then we can easily check that the axiom (SSKU,) is satisfied but the axioms

(SSKU;) and (KUS'S3) are not satisfied.
)
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o|/0 1 2 3
0j1 1 0 3
112 3 0 1
213 0 0 2
312 1 1 1
Table 3.5
o|0 1 2 3
0jo0 1 2 3
110 1 2 3
2|10 1 2 3
3|0 1 2 3
Table 3.6

(3) Consider the Cayley table for a binary operation o defined on the set X =
{0,1,2,3}:
Then we can easily see that the axiom (KUSS3)holds but the axioms (SSKU;) and
(KUSS5) do not hold.

(4) Consider the Cayley table for a binary operation o defined on the set X =
{0,1,2,3}:

o|0 1 2 3
0/0 0 0 O
1/{0 0 0 3
210 0 0 O
3/0 3 0 O
Table 3.7

Then we can easily check the axioms (SSKU;) and (KUSS5) hold. On the other
hand, we get
(10(000))0(lo(000))=0=(00(lol))o(0o(lol))but0=#1.

Thus the axiom (SSKUj3) does not hold.
(5) Consider the Cayley table for a binary operation o defined on the set X =
{0,1,2,3}:

o0 1 2 3
0/0 0 0 O
110 1 3 2
210 2 2 2
310 3 2 3
Table 3.8

Then we can easily see the axioms (SSKU;) and (KUSS3) hold. On the other hand,
we have
lol=1#0=10(000).
6
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Thus the axiom (SSKU;) does not hold.
(6) Consider the Cayley table for a binary operation o defined on the set X =
{0,1,2,3}:

o|0 1 2 3
0j/0 1 0 O
111 1 1 1
212 1 2 1
313 11 3
Table 3.9

Then we can easily check that the axioms (SSKUs;) and (KUSS3) are satisfied but
the axiom (SSKUj) is not satisfied.

Lemma 3.5. (X,0,0) be a SSKU-algebra. Then the followings hold: for all x,y,z €
X,
(1) (zo(zox))o(zo(zox)) =0,

(2) 200=000,
(3) if (wo(yoy))o(zeo(yoy)) =0=(yo(z02))o(yo(z02)), then
(xo(zo0z))o(xo(z0z))=0,
(4) if (xo(yoy))o(zo(yoy)) =0, then
[((zo(yoy))o(zo(yoy)))o(ze(xox))]o[((zo(yoy))o(zo(yoy)))o(zo(zox))] =0,
(5) if (xo(yoy))o(zo(yoy)) =0, then
[((zo(zo0z))o(xo(z02)))o(yo

zoz))]o[((wo(z0z))o(xo(202)))o(yo(z02))]

(
))o(zox)e[((zo(yoy))o(zo(yoy)))e(zow)
)))o(zoz)lo[((yo(yoy))o(yo(yoy)))o(row)

0
o 0,
o 0

, then zo(zo(yoy)) =000,

) (000) 0 (x02) = 1,

) (z0(000))o(z0(000)) =u,

) (0o (zox))o(0o(zox)) =0,

)zo((yo(zoz))o(yo(z0z2)))=yo((zo(z02))o(zo(z02))).

) ((zo(yoy))o(zo(yoy)))o(zox)=((zo(zox))o(zo(zox)))o(yoy).

Proof. (1) In (SSKUy), let x =y =0 and z = x. Then we have

0=
[((zo(000))o(z0(000)))o(((zo(000))o(00(000)))o((ze(000))o(00(000))))]
o[((zo(000))o(zo(000)))o(((zo(000))o(00(000)))o((z0(000))o(00(000))))]
=[((zoz)o(zox))o(((xox)o(000))o((zox)o(000))]
of((xoz)o(zox))o(((xox)o(000))o((zox)o(000)))] [By (SSKU2)|
=[((zoz)o(zox))o(((zox)o(zoz))o((zox)o(zor))]
of((xoz)o(zox))o(((xox)o(zox))o((zox)o(xox))) [By (SSKUs;)]

=[zo((wow)]o[zo((xowx)] [By (52)]
(2) Let € X. Then we have
200 = ((mox)o(a:ox))o((O;O)o(OoO)) [By (S2)]
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=((zox)0(000))o((000)o(000)) By (SSKU)]
=((000)0(000))o((000)o(zox)) By (51)]
=000. [By (52)]

(3) Suppose (zo(yoy))o(ro(yoy)) =0=(yo(z0z))o(yo(z0z)) for all
z,y,z € X. Then we have

0=

[((zo(z02))o(z0o(202)))o(((zo(yoy))o(yo(zoz)))o((zo(yoy)

of((zo(z0z))o(zo(202)))o(((zo(yoy))o(yo(zoz)))o((xo(yoy)

[By exchanging x and z in (SSKU})]
=[((xo(z02))o(xo(z02)))
o((((zo(yoy))o(zo(yoy)))o((zo(yoy))o(zo(yoy)))o(yo(xox)))

(wo(yoy))o(zo(yoy)))o((xo(yoy))o(zo(yoy)))o(yo(zox))))]

((zo(202))0(zo(z02)))

(o (yoy))o(zo(yoy)))o((zo(yoy))o(zxo(yoy)))o(yo(zox)))
([](3 O((y;]y))O( o(yoy)))o((zo(yoy))o(zo(yoy)))o(yo(zox))))
=[((xo(202))o(zo(202)))o(((000)o(000))o((000)0(000)))]
((zo(z0z))o(xo(z02)))o(((000)0(000))o((000)o(000)))]
[By the hypothesis]
[

Jo(yo(zo
Jo(yo(z02))))]

[©]

[©]

[¢]

(
(
[
(
(((=

[©]

o

[((zo(z02))o(zo(z02)))o(000)]o[((xo(z0z))0(xo(20%))) 0 (000)]
By (52)]
=[((zo(z0z))o(zo(202)))o((zo(z02))0(zo(z02)))]
of((xo(zo0z))o(zo(202)))o((zo(20z))0(zo(z02)))]
[By (SSKUy)]
=[ro(z02z)]o[zo(z02z)] By (52)]
(4) Suppose (xo (yoy))o(xo(yoy)) =0 for all z,y € X and let z € X. Then
we have
0=
[((zo(yoy))o(zo(yoy)))o(((zo(zox))o(zo(yoy)))o((zo(zox))o(zo(yoy))))]
o[((zo(yoy))o(zo(yoy)))o(((zo(xox))o(zo(yoy)))o((zo(xox))o(zo(yoy)
[By exchanging z and y in (SSKU)]
=[((zo(yoy))o(zo(yoy))
(((zo(zowx))o(((zo(yoy))o(zo(yoy)))o((zo(yoy))o(zo(yoy))))
((zo(zom))o(((mo(yoy))o(zo(yoy)))o((xo(yoy))o(zo(yoy))))))
[(zo(yoy))o(z0(yoy)))
i

[©]

[¢]

[©]

[¢]

o(zow))o(((zo(yoy))o(zo(yoy)))o((zo(yoy))o(zo(yoy))))

A (ﬂ(foi)) ((wo(yoy))o(zo(yoy)))o((we(yoy))o(xo(yoy))))))

y
[((zo(yoy))o(zo(yoy)))o(((zo(zoz)))o(000))o((z0(zoz)))o(000)))]
of((zo(yoy))o(zo(yoy)))o(((zo(zox)))o(000))o((20(zxox)))o(000))]
[By the hypothesis]
[By

(
= [((zo(yoy))o(zo(yoy)))o((((zo(xox))o ((ZO(mox)))O(((ZO(fvox))O(((zo
(

[}

o[((zo(yoy))o(zo(yoy)))e((((zo(zox))o((zo(zox)))o(((z0(xox))o
(SSKU>)]

[[(20((1/6;]9)) (zo(yoy)))o(zo(zox))]o[((zo(yoy))o(20(yoy)))o(z0(xowx))]

8
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(5) Suppose (zo(yoy))o(zo(yoy)) =0 for all z,y € X and let z € X. Then
we have
0=
[((zo(z0z))o(xo(zoz)))o(((zo(yoy))o(yo(zoz)))o((zo(yoy))e(yo
of((z0(202)) 0 (w0 (202)))o (w0 (yoy))o (yo(202))) o ((zo(yoy))o
[By exchanging x and z in (SSKU;)]
=[((zo(z02))o(zo(202))
(o (yoy))o(zolyoy)))o((ze(yoy))o(ze(yoy))))o(yoe(z02))
(o (yoy))o(zo(yoy)))e((zo(yoy))o(zo(yoy)))) e (ye(ze2))))
[((zo(z02))o(xo(z02))
(((
(((

[¢]

(¢]

O

o

((xo(yoy))o(zo(yoy)))o((zo(yoy))o(xo(yoy)))) o(yo(zoz)))
[($0<(y;]y))°( zo(yoy)))o((zo(yoy))o(zo(yoy))))o(yo(zoz)))]
[((zo(z02))o(xro(z02)))o(((000)o(yo(z0z)))o((000)o(yo(z0z)))]
of((zo(z02))o(xo(z02)))o(((000)o(yo(z02)))o((000)o(yo(zoz)))]

[By the hypothesis]
[((zo(z0z))o(xo(202)))o((((yo(z02))o((yo(z02)))o(((yo(z02))o((yo(202))))]

)o((((yo(z0z))o((yo(z02)))o(((yo(z02))o((yo(202))))]
[By (51) and (SSKU)]

( )
o[((wo(z0z))o(wo(z02))
[E( ((Zz]Z)) (zo(z0z)))o(yo(zoz))o[((zo(z02))o(zo(z02)))o(yo(z02))].
(6) Let «,y € X. Then we have
(x

[(xo(yoy))o(zo(yoy)))o(zox)o[((zo(yoy))o(zo(yoy))) o (zom)
=[(((yoy)oz)o((yoy)owx))o(zoz)o[(((yoy)oz)o((yoy)owx))o(zxox)

o

By (51)]

=[(yoy)o(((zo(rox))o(zo(rox))))o[(yoy)o((zo(zox))o(xo(zor)))]
[By (5%)}

=[(yoy)oOlo[(yoy)o0] By (1)]

=[00o(yoy)|o[0o(yoy)] [By (51)]

=[00(yo(000))]of0o(yo ( 00))] [By (SSKU2)]

=[((000)o(000))o(yo(000))]e[((000)o(000))o(yo(000)))]
[By (52)}

=[((000)o(000))o((000)oy)]o[((000)0(000))c((000)oy)]
[BY (51)]

=(000) 0 (000) [By (52)]

=0. [BY (Sz)]

(7) Let z,y € X. Then we have
[(yo(yoy))o(yo(yoy)))o(zox)]o[((yo(yoy))o(yo(yoy))) o (zow)
=[0o(zoz)]o[0o(zox)] [By (1)]

=[0o(zo(000))]o[0o(zo(000))] By (KUSS)]
=1[((000)0(000))o((000)ox)]o[((000)o(000))o((000)o0z)

[By (51) and (52)]

0. [By (52)]

(8) Suppose zox =xo(yoy) for all z,y € X. Then we have

zo(zro(yoy))
=z o (x o z) [By the hypothesis]

9
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=((zo(zoz))o(zo(zox)))o((zo(zox))o(zo(zox))) By (5)]
=000. [By (1)]
(9) Let € X. Then we have
(zo(zoz))o(zox)=(zox)o(xo(xox)) By (51)]
— 2. [By (52)]
(10) Let x € X. Then we get
(000)o (zox)
(mo(zox))o(zo(zox)))o((zo(xox))o(zo(zor))))e(xox) By (1)
(xo(zoz))o(zox) [By (S2)]
z. [By (9)]
Let z € X. Then we have
(20 (000))0 (z0(000))
((000)oz)o((000)ox) By (51)]
((000)o((zoz)o(zox)))o((000)o((zox)o(zox))) By (52)]
(zox)o(zox) By (9)]
= z. [By (52)]
(12) Let x € X. Then we get
(Oo(zox))o(0o(zox))

— H [l

(11

(ow)oO)o ((xox)o0) By (51)]
( 0)o (000) By (2)]
0. [By (52)]

(13) Let x,y, 2z € X. Then we have
zo((yo(zoz))o(yo(zoz)))=((zoy)o

( (zoy)) e (z202) [By (53)]
(yox)o(y

)o(z02) By (5[‘1)}

o)
yo(zo((z0z))o(xo(z02)). [By (5)
(14) Let a = (((zo(yoy))o(zo(yoy)))o(zox)), b (( o(zox))o(zo(xzox)))e(yoy)
for all ,y,z € X. Then from (5), (S5) and (1), we can prove that
<ao<bob>>o(ao<bob>>—o=<bo<aoa>> (bo (aoa).
Thus by (SSKUs), a = b. So the result holds. O

Lemma 3.6. Let (X,0,0) be an SSKU-alebra. We define a binary relation < on as
follows: for all z, y € X,

x<yif and only if zo(yoy))o(zo(yoy)) =0.
Then < is an partial order on X.

Proof. The proof follows from Proposition 3.5(1), (SSKUs;) and Proposition 3.5(3).
g

Proposition 3.7. Let (X,0,0) be an SSKU-alebra. Then the following hold: for all
T,Y,2 € X;

z <y if and only ifyoy < zxouw,
y<zo(yoy),
(o(yoy))o(zo(yoy)) <youy,

<y implies (xo(z02z))o(xo(z02)) <y,
zo(zo(yoy)) <zoy,
((ZO(yoy))O(ZO(yoy)))O(xox)OZyoy,
1

—_— ==
8
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zo(yoy)<zo((zo(yoy))o(xo(yoy))),
(zo(yoy))o(ro(yoy)) <z

)z <(xo(yoy))o(yoy),
)y<((yox)o(yowx))o(xoux),
;:voxfxo(yoy) implies z o (xo (yoy)) =000,

Proof. (1) The proof of the first part follows from (S;) and Lemma 3.5(4). The
proof of the second part follows from (S;) and Lemma 3.5(5).
(2) Suppose x <y for all z,y € X. Then (zo(yoy))o(zo(yoy)) =0. Thus we
have
[(yoy)o(zox)o(rox))ol(yoy)o(rox)o (zor))
=[(yoy)oalof(yoy)ou] By (S:)]
=(zo(yoy))o(zeo(yoy)) By (S)]
=0.
So by the definition of <, y oy < x o x. The proof of the converse is similar.
(3) Let z,y € X. Then we have

[yo((zo(yoy))o(zo(yoy)))lolyo((zo(yoy))o(zo(yoy)))]

=[yo(((yoy)ox)o((yoy)ox))ofyo(((yoy)ox)o((yoy)ox))] By (S1)]
=[((yo(yoy))o(yo(yoy)))ox]o[((yo(yoy))o(yo(yoy))) o] [By (S3)]
=(0oxz)o(0ox) [By Lemma 3.5(1)]

(O 00) o (000) [By (S; and Lemma 3.5(2)]

0. [By (52)]

Thus y ng(yoy).

(4) The proof follows from (3) and (2).

(5) Suppose z < y for all z,y € X. Then (xo(yoy))o(zo(yoy)) =0. Let z € X.
Then we have
[((zo(z02))o(zo(z0z2)))o(yoy)]ol((zo(z0z))o(zo(z02)))o(yoy)]
[([((Z O(Z)ﬁ z)o((zoz)ox))o(yoy)ol(((zez)ox)o((z02)0x))o(yoy)]
=l[(zoz)o((mo(yoy))o(zo(yoy))lel(zoz)o((zo(yoy))e(zo(yoy))

[By (S2)]
[(z02)00]0[(z02)00]
( . o 0)o i’ (())]o 0) [By Lemma 3.5(2)]
Thus (x (202)) (zo(z02)) <y.

(6) Let z,y,z € X. Then by (4), (zo(yoy))o(zo(yoy)) <yoy. Thus by the
first part of Lemma 3.7(1), we have

zo(((zo(yoy))o(zo(yoy)))o((zo(yoy))o(zo(yoy)))) <zo((yoy)o(yoy)).

So by (S2), zo(zo(yoy)) <zoy.
(7) Let x,y,z € X. Then we have

((zo(yoy))o(zo(yoy)))o(zox)
=(zox)o(((zo(yoy))o(zo(yoy))) [By (S1)]

> (zox)o((zo((yoy)o(yoy)))o(ro((yoy)o(yoy)))) [By (6)]
= (zox)o((zoy)o(zoy)) By (Ss)]

=(((xoz)ox)o((zox)o )l)loy[By(Ss)}
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= (000) oy [By Lemma 3.5(1)]
Thus (20 (yoy)) o (20 (yoy)) o (wo) = you.

(8) The proof follows from (3) and the first part of (1).
(9) Let z,y € X. Then we have
(xo(yoy))o(zo(yoy)))o(zox)ol((zo(yoy))o(zo(yoy)))o(zoz)
=[(xox)o((zo(yoy))o(zo(yoy)))ol(zox)o((zo(yoy))o(ro(yoy)))]
[By (S1)]
=[((xoz)ox)o(zom)ox))o(yoy)|o[((zoz)ox)o(zox)ox))o(yoy)] [By (S3)]
=(0o(yoy))o(0o(yoy)) [By (S1) and Lemma 2.6(1)]
=(000)0(000) [By (S1) and Lemma 2.6(1)]
= 0. [By (54
Thus (zo(yoy))o(zo(yoy)) <z
(10) Let x,y € X. Then we get
[zo((wo(yoy))o(yoy))o((zo(yoy))o(yoy))
ofzo((zo(yoy))o(yoy))o((xo(yoy))o(yoy))]
=[(wo(yoy))o((wo(yoy))o(zro(yoy)))]
of(zo(yoy))o((wo(yoy))o(zo(yoy))) By (S1) and (Ss)]

=0 [By Lemma 2.6(1)]
Thus 2 < (zo (yoy))o (yoy).
(11) Let «,y € X. Then we have
[yo(((yox)o(yowx))o(zomw))oly
=[yo((yo((zo(zoz))o(zo(zox)
ofyo(((yo((zo(zox))o(zxo(zox)
[By (Ss)]
=y (( 0)o(yo0))]ofyo((yo0)o(yo0))] [By Lemma 2.6(1)]
E (( )

~—

8

S:
y o o
000)o(000))]o[yo((000)o(000))] [By Lemma 2.6(2)]
yo0)o (yo0) [By (S.)]
= 0. [By Lemma 2. 6( ) and (12)]
Thus the inequality holds.
(12) Suppose zox =z o (yoy) for all z,y € X. Then we have
xo ((:r o (y) oy))
=((wo(zox))o(zo(zor)))o((wo(row))o(xo(ror)))By (S)]
=000. [By Lemma 2.6(1)]
(13) The proof follows from Lemma 3.5(2) and (S2) O

Proposition 3.8. Let (X,0,0) be an SSKU-algebra. We define a binary operation
* on X as follows: for all x,y € X,

xy=(yo(wom))o(yo(zo)).
Then (X, *,0) is a KU-algebra.
In this case, (X, *,0) is called a KU-algebra induced by (X.o,0).
Proof. Let z,y,z € X. Then by (S2), (S3) and (SSKU}), we have

]
= [((zo(wox))O(ZO(xow)))O(((ZO(yolyQ))O(yO(xox)))O((ZO(yoy))O(yO(wox))))]
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O[é(zo(93056))O(ZO(ffox)))O(((ZO(yoy))0(yo(fforf)))O((ZO(yoy))O(yO(ffOff))))]
Thus the condition (KU;) holds.
Let x € X. Then we get
240 = (00 (z02))o (00 (o))
= (0000 (000) [By (SSKUy)]
=0, [By (52)]
Oxx=(x0(000))o(xo(000))
— (wox)o (zoa) [By (SSKU)]
= . [By (52)]
Thus the conditions (KUjy) and (KUj;) hold.
Finally, suppose x *y = 0 =y * x for all z,y € X. Then we have

(yo(zox))o(yo(rox))=0=(zo(yoy))o(ro(yoy)).
Thus by (SSKUj), = y. So the condition (KU,). Hence (X, *,0) is a KU-algebra.
g
Example 3.9. (1) Consider the SSKU-algebra (X,0,0) = ({0,z,y,1},0,0) given

in Example 3.2(1). Then from (X, 0,0), we obtain the KU-algebra (X, *,0) having
the following Cayley table:

* |0 z y 1
0j0 0O 0 O
zlxz 0 x O
yly y 00
111 y = 0

Table 3.10

(2) Let (X,0,0) be the SSKU-algebra given in Example 3.2(3). Then we have
the KU-algebra (X, *,0) having the following Cayley table:

*x|10 1 2 3 4 5
0j0 1 2 3 3 3
110 0 2 2 2 1
2/0 1 01 0 1
3/0 0 0 0 0 O
410 0 2 3 4 4
5/0 0 0 0 0 O
Table 3.11

Definition 3.10. Let (X, 0,0) be a SSKU-algebra. Then X is said to be:
(i) commutative, if for all z,y € X,

(3.1) rAy = yAx,

where zAy = [(z o (zo (yoy)))lo[(zo (zo(yoy))),
13
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(ii) bounded, if there is the greatest element 1 of X (called the unit of X), i.e
(xo(lol))o(xo(lol)) =0 for eachx € X
and (1o (zoxz))o(lo(xox)) will be denoted by Nzx.

Example 3.11. (1) Consider the Cayley table for the binary operation o on the set
X ={0,1,2,3}:

o0 1 2 3
0j0 3 1 2
113 1 3 1
211 3 2 3
3121 3 0
Table 3.12

Then we can see that (X, o0,0) is a commutative SSKU-algebra.
(2) Counsider the Cayley table for the binary operation o on the set X = {0, 1,2, 3}:

o|0 1 2 3
0j0 3 3 3
113 1 1 1
213 1 2 2
313 1 2 3
Table 3.13

Then (X, 0,0) is a bounded SSKU-algebra.

Lemma 3.12. Let (X,0,0) be a SSKU-algebra. If X is commutative, then xAy <
x, Ay <y for all x,y € X.

Proof. Let x,y € X. Then we have
[(zAy) o (z 0 x)] o [(zAy) o (2 0 z)]

)
= [((zo(zox))o(xo(xox)))o(zo(yoy))|e[((zo(zor))o(zo(zor)))o(zo(yoy))]
[By (51) and (S3)]
(00 (zo(yoy))]el0o(zo(y
=0, [By Lemma 3.5(2) and (S2)]

oy))] [By Lemma 3.5(1)]

[(xAy) o (yoy)] o [(zAy) o (y o y)]

= [(yAz) o (yoy)] o [(yAx) o (y o y)] [Since X is commutative]

= [((yo(yo(wox)))o(yo(yo(xzox))))o(yoy)|o[((yo(yo(zox)))o(yo(yo(zox))))o(yoy)]

= [((yo(yoy))o(yo(yoy)))o(yo(zox))]ol((yo(yoy))o(yo(yoy)))o(yo(zox))]
[By (S1) and (S3)]

[0 o(yo(zow))]of0o(yo(xox)) [By Lemma 3.5(1)]

0. [By Lemma 3.5(2) and (S3)]
Thus x/\y <z, zAy <y. O
14
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Proposition 3.13. Let (X,0,0) be a bounded SSKU-algebra. Then the following
hold: for all x,y € X,

(1) N1=0, NO=1,

(2) Nz o(yoy) = Nyo (zoa),

(3) NNz < z.

Proof. (1) Let € X. Then we have,
N0O=(10(000))o(10(000))
= (lol)o(lol) [By (SSKUy)]
1, [By (S2)]
(10(101))0(10(101))
= 0. [By Lemma 3.5(1)]
(2) Let 2,y € X. Then we have
Nzo(yoy) = (1o (zoz)o(lo(wow))o(yoy)

N1

~

= (((woz)ol)o((zox)ol))o(yoy) By (S1)]
= (zox)o((lo(yoy))o(le(yoy))) By (S3)]
= (zox)o Ny

= Nyo (zox). By (S1)]

(3) Let « € X. Then we have
NNzo (zox)
[(1o(NzoNz))o(zoz)]o[(lo(NzoNx))o (zoux)]
o(((Lo(zoz))o(lo(zoxz)))o((lo(zox))o(lo(zox))))o(zox)
(Lo(zox))o(lo(zoxz)))o((lo(zox))o(lo(zox)))) o (xox)
(Lo(zow)))o(lo(lo(zow))))o(zox)

(Lo(zow)))o(lo(lo(zow))))o (zoz) [By (S2)]
lo(zox))o((lo(zox))o(lo(zox)))]
of(lo(zoxz))o((lo(zox))o(lo(zox)))] By (Si1) and (Ss)]
(To(zox))o0)o((lo(xox))o0) [By Lemma 3.5(1)]
(000) 0 (000) By Lemma 3.5(2)]

= 0. [By Lemma 3.5(1)]
Thus NNz < z. O

Proposition 3.14. Let (X,0,0) be a bounded commutative SSKU -algebra. Then
the following hold: for all x,y € X,

(1) NNz =z,

(2) x <y implies Ny < Nz,

(3) zAl =z, 1Az =1,

(4) NzANy = N(yVz), NzVNy = N(zAy), where zVy = N(NzANy).

Proof. (1) Let x € X. Then we get
[to (NNxoNNz)|o[zo(NNxoNNz)

=[zo(((lo(NzoNz))o(lo(NxoNx)))o((lo(NzoNz))o(lo(NxoNx))))]
ofzo(((1o(NzoNz))o(lo(NzoNz)))o((Llo(NzoNz))o(lo(NazoNw))))
=[zo(lo(NzoNz))|o[zo(lo(NzoNz))| By (5]
=[zo(lo(((lo(zoxz))o(lo(zow)))o((lo(zoz))o(lo(xox)))
ofzo(lo(((lo(zoxz))o(lo(zox)))o((lo(zox))o(lo(zox))]
=[zo(lo(lo(zox)))]olzo(lo(lo(zox)))] By (S2)]
=[zo(xo(xo(lol)))]o[x (xlcg (x 0 (101)))] [Since X is commutative]

lo
x o
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= 0. [Since 1 is the unit of X]
Thus © < NNz. By Proposition 3.12(3), NNz < 2. So NNz = x.
(2) Suppose = < y for all z,y € X. Then we have
(Nyo (NzoNz))o(Nyo(NzoNz))
=[((To(yoy))o(lo(yoy)))o(lo(zox))
(Lo(yoy))o(lo (yoy))) (Lo(zox))] [By (S2)]
lo((zoz)ol))o(olo((zox)ol)))o(yoy)
(elo((zox)ol))o(elo((zox)ol)))o(yoy)] By (51) and (S3)]
o(lo(zox)))o(lo(lo(zoxz))))o(yoy)]
(Io(lo(zow)))o(lo(lo(zox))))o(yoy)l [By (S1)]
(zo(lol)))o(zo(zo(lol))))o(yoy)
o(xo(lol)))o(zo(zxo(lol))))o(yoy)] [Since X is commutative]
zo(yoy))o(zo(yoy)))o(zo(lol))]
((zo(yoy))o(zo(yoy)))o(zo(lol))] By (S1)and (Ss)]
=(0o(xo(lol)))o(0o(xo(lol))) [By the hypothesis]
=(000) 0 (000) [By Lemma 3.5(2)]

Thus Ny < Nzx.

(3) Let € X. Then we have
[(xAL) o (zoz)] o [(xAL) o (x 0 z)]
[((mo(zo(1o1)))o(zo(zo(lol))))o(zox)]o[((zo(xo(1o1)))o(zo(xo(101))))o(zox)]
[(zo(zox))o(zo(zox)))o(zo(lol))]o[((zo(zox))o(zo(zox)))o(zo(lol))]
[By (S1) and (S3)]
Gk

=[0o(zo(lol))o[0o(xro(lol))] [By Lemma 3.5(1)]
=(000)o (000) [By Lemma 3.5(2)]
=0, [By (S2)]

[z 0 ((xAL) o (zA1))] o [2 ((CU/\l)O(xM))]
=[zo(((zo(zo(lol)))o(zo(zo(lol))))o((zo(zo(lol)))o(zo(zo(lol)))))]
ofzo(((zo(xzo(lol)))o(z O( o(lol))))o((zo(zo(lol)))o(xo(zo(lal)))))]
=[$O($O( o(lol)))]ozo(zo(zo(lol)))] By (S2)]
= 0, [Since 1 is the unit of X]

((IAz) o (Lo 1)) o ((1Az) o (101))
— [((1o(1o(wor)))o(1o(1o(zom))))o(1o1)jo]((1o(1o(won)))o(1o(1o(war))))o(101)]
— [(1o(1e1))o(Te(Lo1)))o(la(wom))]o[(1o(1o1)o(lo(1o1)))o (1o (o))
[By (S1) and (Sy)]
=[0o(lo(zox))]o0o(lo(zox))] By Lemma 3.5(1)]
=0, [By Lemma 3.5(2) and (S2)]

o ((mAl) o (zAl))] o [Lo ((zAl) o (zA1))]

o ((1Ax) o (1Az))] o [1 o ((1Az) o (1Az))] [Since X is commutative]
o((lo(lo(zox)))o(lo(lo(zox))))]o[lo((lo(lo(zox)))o(lo(lo(xox))))]
(Lol)o(lol))o(lo(zox))]o[((lol)o(lol))o(lo(zox))] By (S3)]
o(lo(zow)))o(lo(lo(zox))) [By (S1)]
o(xo(lol)))o(xo(xo(lol))) [Since X is commutative]

16
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= 0. [Since X is the unit of X]
Thus by (SSKUj), zAl =z, 1Az = 1.
(4) Let z,y € X. Then we have
NxANy = N(zVy)
= N(NzANy)
= N(NyANz) [Since X is commutative]
= N(yVz).

Similarly, we can show that the second part holds. O

Theorem 3.15. Let (X,0,0) be a bounded SSKU-algebra. The the following are
equivalent: for all x,y € X,

(1) NNz =z,

(2) zo(yoy) = Nyo(NzoNzx),

(3) xo(NyoNy)=yo(NxoNzx),

(4) x < Ny implies y < Nz.

Proof. (1)=(2) Suppose NNz = z for all x € X and let y € X. Then we have
xo(yoy)=NNzo(yoy) [By the hypothesis]
= Nyo (Nx o Nz) [By Proposition 3.11(2)]
(2)=(3) Suppose z o (yoy) = Nyo (Nzo Nz) and let z,y € X. Then we have

20 (NyoNy) = NNyo (NzoNz), yo(NzoNz)= NNz o (Nyo Ny).
Thus by Proposition 3.11(2), NNy o (Nxzo Nx) = NNz o (Nyo Ny). So we get
xo(NyoNy)=yo(NzxoNx).
(3)=(4) Suppose (3) holds and = < Ny for all 2,y € X. Then clearly,
(zo(NyoNy))o(zo(NyoNy))=0.

Thus by (3), (yo (NzoNz))o (yo(NzoNz))=0.Soy < Nz.

(4)=(1) Suppose (4) holds and let z € X. Then by Lemma 3.12(3), NNz < z. If
x < Ny for all y € X, then clearly, x < Nz. Thus by the hypothesis, x < Nz. Also,
by the hypothesis, t < NNz. So NNz = . g

Theorem 3.16. Let (X,0,0) be a SSKU-algebra. If xtAy =0 for all x,y € X, then
the the following are equivalent: for all x,y € X,

(1) X is commutative,

(2) Ay < yAz,

(3) (zAy) o (yAz) = 0.

Proof. The proofs follows from Lemma 3.5 and (S2). O

A partially ordered set (L, <) is called a lower or meet semilattice, if every pair
of elements in L has a greatest lower bound and it is called an wupper or a join
semilattice, if every pair of elements in L has a least upper bound. Furthermore, it
is called a lattice, if it is both an upper and a lower semilattice. For all z,y € L, the
meet and the join of {z, y} will be denoted by x Ay = glb{z,y} and 2 Vy = lub{z,y}
(See [33]).

17
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Proposition 3.17. Let (X,0,0) be a SSKU-algebra. If X is commutative, then
xAy is a greatest lower bound of {x,y} for all z,y € X, i.e., (X <) is a meet
semilattice.

Proof. Suppose X is commutative and let z,y € X. Then Lemma 3.12, zAy <
x, Ay < y. Thus zAy is a lower bound of {x,y}. Let z € X such that z <z, z <.
Then we get

(3.2) (zo(zow))o(zo(xox))=0=(20(yoy))o(zo(yoy)).
Thus we have
z=(20(000))o(z0(000)) [By Lemma 3.5(11)]
=[zo(((zo(zom))o(zo(xox)))o((z0(xox)) o (20(xox))))
ofzo(((zo(zox))o(zo(zox)))o((zo(xomx))o(zo(xox))))] By (3.4)]
=[zo(z0(xox))]o { o (zo(zox)) By (51)]

)
=[ro(xo(zoz))|oxo(xo(zoz))]. [Slnce X is commutative]
Similarly, z =y o (y o) (zo2z2))]o [ o(y ))(f 0 z))]. Thus we get

z=lro(zo(zoz))]ozo(xo
= [zo(zo(((yo(yo(zoz)))o (?JO(?JO( 0z))))o((yo(ye(z02)))o(ye(yo(z02)))))]
ofzo(zo(((yo(yo(z02)))o(yo(yo(zoz))))o((yo(ye(z02)))o(ye(yo(z02)))))]
=[zo(zo(yo(yo(zoz2)))]efze(zo(yo(yo(z02))) By (S2)
<(zo(zo(yoy)))o(zo(xo(yoy))
= zN\y.
So xAy is the greatest lower bound of {z,y}. O

Proposition 3.18. Let (X,0,0) be a SSKU-algebra. If X is bounded and commu-
tative, then xVy is a least upper bound of {x,y} for all z,y € X, i.e., (X <) is a
join semilattice.

Proof. Suppose X is bounded and commutative and let x,y € X. Then clearly,

NzANy < Nz, NxANy < Ny by Lemma 3.12. By Proposition 3.14(1), we have
x= NNz < N(NzANy) = aVy, y = NNy < N(NzANy) = zVy.

Thus zVy is an upper bound of {z,y}. Let 2 € X such that z < 2z, y < 2. Then

by Proposition 3.14(2), Nz < Nz, Nz < Ny. Thus Nz < NxzANy. Also, by

Proposition 3.14(2), N(NzANy) < NNz. Thus 2Vy < z. So xVy is a least upper

bound of {z,y}. Hence X is a join semilattice. O

From Propositions 3.17 and 3.18, we have the following.

Corollary 3.19. Let (X,0,0) be a SSKU-algebra. If X is bounded and commuta-
tive, then (X <) is a lattice.

4. CONGRUENCES ON SSKU-ALGEBRAS

In this section, we obtain some results on the images and the preimages of SSKU-
ideals of a SSKU-algebra under a SSKU-homomorphism. Also, we will deal with
congruences by ideals kerf and Kerf of a SSKU-homomorphism f.

Definition 4.1. Let (X,0,0) be a SSKU-algebra and I a nonempty subset of X.
Then I is called a Shefer stroke KU -ideal (briefly, SSKU-deal) of X if it satisfies
the following conditions: for all z,y € X,

18
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(SSKUIL,) 0 € I,
(SSKUIL) (yo(zoz))o(yo(zox)) €l and x € I imply y € I.

It is clear that {0} and X are two SSKU-ideals of X. We will call X a trivial
SSKU-ideal. An SSKU-ideal I said to be proper, if I # X.

Example 4.2. Let (X,0,0) be the SSKU-algebra given in Example 3.2(2). Then
the subsets {0}, {0,1}, {0,2}, {0,1,2}, {0,1,3} and {0,2,3} of X all are proper
SSKU-ideals of X.

Proposition 4.3. Let (X,0,0) be a SSKU-algebra, I a SSKU-deal of X andy € 1.
If x <y for each x € X, then x € I.

Proof. Suppose x < y for each © € X. Then clearly, (xo(yoy))o(xo(yoy)) =0.
Thus by (SSKUI,), (xo(yoy))o(zo(yoy)) € I. Sincey € I, by (SSKUL), z € X. O

For a SSKU-algebra X and any a,b € X, define the subset A(a,b) of X as follows:
A(a,b)={z € X :(zo(aca))o(xro(aca)) <b}.

Theorem 4.4. Let (X,0,0) be a SSKU-algebra and I a nonempty subset of X.
Then I is a SSKU-deal of X if and only if A(z,y) C I for all x,y € I.

Proof. Suppose I is a SSKU-deal of X and let z € A(x,y) for all z,y € I. Then
(zo(xox))o(zo(xox)) <y. Thus by Proposition 4.3, (zo(zoz))o(zo(xox)) € I.
So by (SSKUI,), z € I. Hence A(x,y) C I.
Conversely, suppose A(z,y) C I for all 2,y € I. Since I is a nonempty subset of
X, there x € I. Then by Lemmas 3.5(2) and 3.6(13),
(Oo(zox))o(0o(zox))=0<uz.

Thus 0 € A(z,z) C I. So (SSKUI;) holds.
Now suppose (yo (zox))o(yo(zox)) €I and z € I for all z,y € X. Then by
Lemma 3.5(6) and Lemma 3.6(13),

[((yo(zoz))olye(zow)))o(zor)o[((yo(zox))o(ye(zor)))e(zor)] <.

Thus y € A((yo (xox))o(yo (zox)),x) C I. So (SSKUI,) holds. Hence I is an
ideal of X. 0

The following is an immediate consequence of Theorem 4.4.

Corollary 4.5. Let (X,0,0) be a SSKU-algebra and I a nonempty subset of X.
Then I is a SSKU-deal of X if and only if the following condition holds: for all
z,y € I and each z € X,

[((zo(zox))o(zo(zox)))o(yoy)]o[((zo(zox))o(zo(zox)))o(yoy)] = 0 imply 2 € I.

Definition 4.6. Let (X,0,0) be an SSKU-algebra and R an equivalence relation
on X. Then R is called a Sheffer stroke KU -congruence (briefly, SSKU-congruence)
on X, if for all z,y,u,v € X, xRy and uRv imply that

(yo(zox))o(yo(row))R(vo(uou))o(vo(uou)),
(fUO(yoy))0($0(yoy))£(uo(vov))O(uO(vov))-
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Proposition 4.7. Let (X,0,0) be an associative SSKU -algebra and I a SSKU -deal
of X. We define the relation «~; on X as follows: for all x,y € X,

z~pyiff (yo(zox))o(yo(zox)), (wo(yoy))o(zo(yoy)) el
Then g is an SSKU -congruence on X.

Proof. It is obvious that « is symmetric Let © € X. Then clearly, (zo(zox))o(zo
(x oz)) = 0 by Lemma 3.5(1). By (SSKUL), (xo(xoxz))o(zo(xox)) € I. Thus
T ~1 x. So ~j is reflexive. Suppose ¢ ~; y and y ~; z for all z,y,z € X. Then
clearly,

(4.1) (yo(romx))o(yo(zrox)), (ro(yoy))o(zo(yoy)) €l,

(4.2) (yo(zoz))o(yo(zoz)), (zo(yoy))o(zo(yoy)) €l
On the other hand, we have

[((zo(zox))o(z0(xox)))o(zo(yoy)))o((yo(zox)) e (yo(zor))
o[(((zo(zox))o(zo(zox)))o(zo(yoy)))e((yo(zox))o(yo(xom)))
=[(((zo(zox))o(000))o(ze(yoy)))o((yo(rox))ec(000))]
o[(((zo(zox))o(000))e(zo(yoy)))o((ye(rox))o(000) [By (SSKU,)]
=[(((zo(zox))o(z0(yoy)))e(yo(rox)))e((000)o(000))]
o[((zo(zom))o(zo(yoy)))o(yo(zox)))o((000)o(000))] By (S5)]
=[(((zo(zox))o(zo(yoy)))e(yo(zox)))ol]
o[(((zo(zox))o(zo(yoy)))e(ye(zox)))o0] [By (S:)]

)
= 0. [By Lemma 3.5(2) and (S
By Lemma 3.6, we get

(43)  ((zo(zox))o(zo(zox)))o(zo(yoy)) <(yo(zox))o(yo(xox)).
Moreover by (S2),
((zo(zox))o(zo(zox)))o(z0(yoy))
= ((zo(zox))o(zo(xox)))o(((z0(yoy)o(zo(yoy))o((zo(yoy)o(zo(yoy))).
Thus by (4.1), (4.2) and Theorem 4.4,
((zo(zox))o(zo(xox))
€ fIl((((ZO(yoy)O(ZO(yoy)))O((ZO(yoy))O(zo(yoy))),(yO(xox))O(yO(ﬂfoz)))
C 1.
Similarly, (z o (z02))o(xo(z02)) € I. So x ~; z. Hence ~; is an equivalence
relation on X.
Now suppose z ~; u and y ~; v for all x,y,u,v € X. Then clearly,

(4.4) (xo(you))o(xo(uowu)), (uo(rxox))o(uo(rox))el,

(4.5) (yo(vov))o(yo(vow)), (vo(yoy))o(ve(yoy)) el
On the other hand, we have

[(((yo(zoz))o(yo(row)))o(yo(uou)))o((uo(zor))o(uo(ror))
o[(((yo(zoz))o(yo(zox)))o(yoe(uou)))o((uo(rox))o(uo(xor)))
=[(((yo(zox))e(000))o(yo(uou)))e((uo(xox))o(000))

o[(((yo (zox))o(0e0))o(yo(uou)))o((ue(zox))e(000))] By (SSKU,)]
=[(((yo(zox))o(yo(uou)))o(uo(zow)))o((0c0)ec(000)]
o[(((ye(zow))o(yo(uou)))o (u (20 x))) o ((000) 0 (000))] [By (Ss5)]
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=[(((yo(zox))o(yo(uou)))e(uo(zox))) o0
o[(((yo (xomx))o(yo(uou)))o(uo(xox)))o0] By (S2)]
= 0. [By Lemma 3.5(2) and (S2)]
By Lemma 3.6, we get
(46)  ((yo(zow))o(ye(zox)))o(yo(uou)) < (uo(xowx))o(uo(xor)).
Thus by (4.4) and Proposition 4.3,

(4.7 ((yo(zox))o(yo(zrox)))o(yo(uou)) €l

So we have

(48) (yo(wom))o(yo (wom) ~r (yo (wow) o yo(uou)).

Similarly, we obtain

(4.9) (yo(uowu))o(yo(uou)) ~y(vo(uowu))o(vo(uou)).

Since ~7j is transitive, by (4.8) and (4.9),

(4.10) (yo(zox))o(yo(xox)) ~r(vo(uowu))o(vo(uou)).

Hence ~; is an SSKU-congruence on X. 0

Remark 4.8. Let I be a SSKU-ideal of an associative SSKU-algebra (X, o, 0) and
x € X. Then the subset C, of X defined by:
Co={yeX:y~ya}

is called the Sheffer stroke KU -congruence class (briefly, SSKU-congruence class)
induced by I and the collection {C, : z € X} will be denoted by X/I. It is obvious
that z € C,,.

Proposition 4.9. Let I be a SSKU-ideal of an associative SSKU -algebra (X, 0,0).
Then I = Cy.

Proof. Let x € I. Then by Lemma 3.5(11), (12) and (SSKUT; ), we have
(xo(000))o(zo(000)el, (Oo(xox))o(0o(xox)) =0¢€l.

Thus = ~; 0. So z € Cy, i.e., I C Cy.
Conversely, let x € Cy. Then clearly, (x 0 (000))o(xo(000)) € I. Since 0 € I,
by (SSKUIy), x € I. So Cy C I. Hence I = Cj. O

Proposition 4.10. Let I be a SSKU -ideal of an associative SSKU -algebra (X, 0,0).
We define the binary operation * on X/I as follows: for all z,y € X,

Ca x Cy = Clyo(zon))o(yo(aor))-
Then (X/I,*,Cy) is a KU-algebra.
In this case, (X/I,x*,Cy) is called a quotient KU -algebra of X induced by I.

Proof. Since ~j is a SSKU-congruence on X, * is well-defined. Let z,y,z € X.
Then by the definition of * and (Ss), we have
(Co 5 Cy) % [(Cy * C2) # (Co % C)]
= Cl((z0(wow))o(z0(wox)))o(((20(yoy))o(yo(zox)))o((z0(yoy))o(yo(zox))))]
o[((zo(woz))o (ZO(woz)))O(((ZO(yoy)%i(yO(wor)))o((ZO(yoy))O(yO(mow))))]
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Thus the condition (KU;) holds.
Now let € X. Then we get
Cz * Co = C(0o(zox))o(00(zox))
= Cp, [By Lemma 3.5(2) and (Ss2)]
Co * Cz = C20(000))o(x0(000))
Thus the conditions (KUjy) and (KUj;) hold.
Finally, suppose C, x Cy = Cy = Cy * C,, for all z,y € X. Then we have

(yo(zox))e(yo(rox)) ~r(xo(yoy)) o (zo(yoy)).
Thus C; = Cy. So the condition (KUy) holds. Hence (X/I,*,Cp) is a KU-algebra.
O

Proposition 4.11. Let I be a SSKU-deal of an associative SSKU -algebra (X, 0,0).
Ifm: X — (X/1,%,Cy) is the canonical mapping defined as follows: for each x € X,

(x) = Cy,
then 7 is an SSKU-KU -epimorphism.
Proof. The proof is easy. O

Definition 4.12. Let (X,0,0) be a SSKU-algebra and (Y, *,0/) a KU-algebra.
Then a mapping f : X — Y is called a Sheffer stroke KU-KU -homorphism (briefly,
SSKU-KU-homomorphism), if it satisfies the following conditions: for all z,y € X,

(i) £(0) =0,

(i) f((zo(yoy))o(zo(yoy))) = fy)* f(x).
The subset kerf = f~1(0') of X is called the Sheffer stroke KU-KU -kernel (briefly,
SSKU-KU-kernel) of X.

An injective [resp. surjective and bijective] SSKU-KU-homomorphism is called
a Sheffer stroke KU-KU-monomorphism [resp. epimorphism and isomorphism]
(briefly, SSKU-KU-monomorphism [resp. epimorphism and isomorphism]).

Lemma 4.13. The SSKU-KU -kernel kerf is an SSKU -ideal of X. Furthermore,
kerf is an SSKU-congruence on X such that Co = kerf, where C, = {y € X :
Y ~kerg T} for all x € X.

Proof. From Definition 4.12(i), it is obvious that 0 € kerf. Then kerf satisfies
the condition (SSKUI;). Suppose (yo (xox))o (yo (zox)), v € kerf. Then
flyo(zox))o(yo(zox))) = f(x)* f(y) = 0. Thus by the definition of < in a
KU-algebra, f(y) < f(x). Since = € kerf, f(x) = 0, ie., fly) < 0. By (KU, ),
f(y)=0". Soy € kerf, ie., kerf satisfies the condition (SSKUL). Hence kerf is a
SSKU-ideal of X.

The proof of the second part is similar to Propositions 4.7 and 4.9. O

Definition 4.14. Let (X,0,0) be an SSKU-algebra and A a nonempty subset of
X. Then A is called a Sheffer stroke KU -subalgebra (briefly, SSKU-subalebra), if
it satisfies the following condition:

(4.11) (zo(yoy))o(xo(yoy)) € Aforall z,y € X.
22
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Definition 4.15. Let (X,0,0) be an SSKU-algebra, (Y, *,0°) an SSKU-algebra,
f:X =Y amapping, A C X and B C Y. Then
(i) the image of A in'Y under f, denoted by f(A), is a subset of X defined by:

f(A) ={f(x) €Yz e X},
(i) the preimage of B in X under f, denoted by f~1(B), is a subset of X defined
by:
fYB)={r e X : f(x) € B}.

Proposition 4.16. Let (X,0,0) be an SSKU-algebra, (Y, *, 0/) a KU-algebra and
f: X =Y a SSKU-KU-homomorphism. Then the following hold:

(1) if A is an SSKU-subalgebra of X, then f(A) is a KU -subalgebra of Y,
(2) if I is an SSKU-ideal of X, then f(I) is a KU-ideal of Y,
(3) if B is a KU-subalgebra of Y, then f~1(B) is an SSKU -subalgebra of X,
(4) if J is a KU-ideal of Y, then f=1(J) is an SSKU-ideal of X,
(5) f is is an SSKU-KU-momomorphism if and only if ker f = {0}.

Proof. (1) Suppose A is an SSKU-subalgebra of X and let x,y € f(A). Then there
are a,b € X such that x = f(b), y = f(a). Since f is an SSKU-KU-homomorphism,
we have

wxy=f(b)* fla) = f((ao(bob))o(ac(bob))).
By the hypothesis, (a0 (bob))o (ao(bob)) € A. Thus zxy € f(A). So f(4) is a
KU-subalgebra of Y.

(2) Suppose I is an SSKU-ideal of X. Then 0 € I. Thus by Definition 4.12(i),
0" € f(I). Suppose f(a) * f(b), f(a) € f(I) for all a,b € X. Then f(a) * f(b) =
f((bo(aoa))o(bo(aca))). Thus (bo(aca))o(bo(aca)), a € I. By the hypothesis,
bel,ie., f(b) € f(I). So f(I)is a KU-ideal of Y.

(3 ) Suppose B is a KU-subalgebra of Y and let a,b € f~(B). Then there are

x,y € B such that z = f(b), y = f(a). Thus x xy = f(b) * f(a) = f((ao (bob))o
(ao(bob))). By the hypothesis, zxy € B. So f((ao(bob))o(ac(bob))) € B, ie.,
(ao(bob))o(ao(bob)) € f~1(B). Hence f~1(B) is an SSKU-subalgebra of X.

(4) Suppose Jis a KU-ideal of Y. Then clearly, 0" € J. Thus by Definition 4.12(i),
0 € f~4(J). Now suppose (bo (aoa))o(bo(aoa)), a€ f~1(J) for all a,b € X.
Then f((bo(aoa))o(bo (a oa)) = f(a) * f(b), f(a) € J. Since J is a KU-ideal of
Y, f(b) € J. Thus b € f~1(J). So f~1(J) is an SSKU-ideal of X.

(5) Suppose fisisan SS K U-KU-momomorphism and let € ker f. Then clearly,
f(x) = 0. Since f(0) = 0, f(z) = f(0). Thus by the hypothesis, z = 0. So
kerf = {0}.

Conversely, suppose kerf = {0} and let =,y € X such that f(z) = f(y). Then
we have

fllyo(zox))o(yo(rox))) = f(z)*fly) =0 = f((wo(yoy))o(zo(yoy))).
Thus we get
(yo(zoxz))o(yo(rox)), (xo(yoy))o(xo(yoy)) € kerf.
By the hypothesis,

(yo(zow))o(yo(rox))=0=(zo(yoy))o(zo(yoy)).
23
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So by (SSKUs), = y. Hence f is is an SSKU-KU-momomorphism. O

Proposition 4.17. Let (X,0,0) be an associative SSKU-algebra and (Y, *,0') a
KU-algebra. If f : X — Y a SSKU-KU-epimorphism, then there is a KU-
isomorphism between the quotient KU -algebra X /kerf and Y .

Proof. Suppose f: X — Y an SSKU-KU-epimorphism. Define the mapping ¢ :
X/kerf =Y as follows: for each = € X,

©(Cy) = f(x), where Cp = {y € X : y ~perp 2} and Cy = kerf.
Let Cy,Cy € X/kerf such that C; = C,. By (2.1) and Proposition 4.10, we get
Clyo(zon))o(yo(zo)) = Cu * Cy = Co = Cy ¥ Oy = Clao(yoy))o(wo(yoy)) -

Then (yo(zoz))o(yo(zrox)), (xo(yoy))o(xo(yoy)) € kerf. Thus by Definition
4.12(ii), we have

F((yo(wow))o(yo(wor))) = f(@)xf(y) =0 = f(y)x[(x) = f((wo(yoy))o(wo(yoy))).

By (SSKUy), f(z) = f(y). So ¢(Cz) = ¢(Cy). Hence ¢ is well-defined.
Next, suppose Cy, Cyy € X/kerf such that ¢(C,) = ¢(C,) for all x,y € X. Then
f(z) = f(y). By Definition 4.12(ii) and (2.1), we have

F((yo(wow))o(yo(wor))) = f(@)xf(y) =0 = f(y)x[f(x) = f((wo(yoy))o(wo(yoy))).

Thus (yo(zox))o(yo(zox)), (xo(yoy))o(xo(yoy)) € Kerf. So & ~pery y, i€,
C, = Cy. Hence g is injective. It is obvious that ¢ is surjective.
Finally, let C;,C, € X/kerf. Then we get
(p(Cx * Cy) = ‘P(C(yo(xox))o(yo(xox)) [By PI‘OpOSitiOH 410]

=f((yo(xox))o(yo(xox))) [By the definition of ¢)
= f(x) = f(y) [By Definition 4.12(ii)]
= @(Cy) x p(Cy).

Thus ¢ is a KU-homomorphism. So ¢ is a KU-isomomorphism. O

It is obvious that if 7 : (X,0,0) = (X/kerf,*,Cp) is an SSKU-KU-epimorphism
given in Proposition 4.11, then p o7 = f.

Definition 4.18. Let (X,0,0) and (Y, o, 0,) be SSKU-algebras. Then a mapping
f:+ X — Y iscalled a Sheffer stroke KU -homorphism (briefly, SS KU-homomorphism),
if f(zxoy)=f(x)o f(y) for all 2,y € X.
The subset Kerf = f~1(0") of X is called the Sheffer stroke KU-kernel (briefly,
SSKU-kernel) of X.

An injective [resp. surjective and bijective] SSKU-homomorphism is called a
Sheffer stroke KU-monomorphism [resp. epimorphism and isomorphism] (briefly,
SSKU-monomorphism [resp. epimorphism and isomorphism]).

Definition 4.19. Let (X, o,0), (Y, o, 0/) be SSKU-algebras, f : X — Y amapping,
AC X and B CY. Then
(i) the image of A in'Y under f, denoted by f7(A), is a subset of X defined by:

f7(A) ={f(x) e Y :x € X},
24
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(ii) the preimage of B in X under f, denoted by f* (B), is a subset of X defined
by:
f(B)={z e X: f(x) € B}.

Proposition 4.20. Let (X,0,0), (Y, o,,O/) be SSKU -algebras be SSKU -algebras
and f: X =Y an SSKU-homomorphism. Then the following hold:
(1) f(0) =0,
(2) if A is an SSKU -subalgebra of X, then f7(A) is an SSKU -subalgebra of Y,
(3) if I is an SSKU-ideal of X, then f7(I) is an SSKU-ideal of Y,
(4) if B is an SSKU-subalgebra of Y, then f<(B) is an SSKU -subalgebra of X,
(5) if J is an SSKU-ideal of Y, then f* (J) is an SSKU-ideal of X,
(6) f is is an SSKU-momomorphism if and only if Kerf = {0}.

Proof. (1) The proof follows from Lemma 3.5(1) and Definition 4.18.

(2) Suppose A is an SSKU-subalgebra of X and let z,y € f7(A). Then there are
a,b € Asuch that z = f(a) and y = f(b). By the hypothesis, (ao(bob))o(ao(bobd)) €
A. Thus f7((ao(bob))o(ao(bob))) € f7(A). Since f is an SSKU-homomorphism,

we have
F7((@o(bob))o(ao(bob)) = (xo (yo y))o (z0 (yo y)).

So (z0 (yo y))o(zo (yo y)) e f7(A). Hence f(A) is an SSKU-subalgebra of
Y.

(3) Suppose I is an SSKU-ideal of X. Then by (SSKUI;), 0 € I. Thus by (1),
0 e f~(I). So the condition (SSKUI,) holds.

Now suppose (yo (zo z))o (yo (zo x)), x € f~(I). Then there are a € I and
b € X such that x = f(a) and y = f(b). Since f is an SSKU-homomorphism, we
get

f((bo(aoa)o(bo(aca))=(yo (zo x))o (yo (xo x))e f7(I).
Thus (bo(aoca))o(bo(aca)) € I and a € I. By (SSKULy),be I.Soy = f(b) € f7(I).
Hence the condition (SSKUIs) holds. Therefore f—(A) is an SSKU-subalgebra of
Y.
(4) Suppose B is an SSKU-subalgebra of Y and let a,b € X such that f(a), f(b) €
B. Then (f(a)o (f(b)o f(b))o (f(a)o (f(b)o f(b))) € B. Since f is an SSKU-

homomorphism, we have

(fla)o" (f®B) o f(B))o (fla)o (F(B)o f(b) = f((ao(bob))o(ao(bob)).
Thus (ao (bob))o(ao(bob)) € f<(B). So f<(B) is an SSKU-subalgebra of X.
(5) Suppose J is an SSKU-ideal of Y. Then clearly, by (SSKUI;), 0" € J. Thus

by (1), 0 € f<(J). So the condition (SSKUI;) holds.
Now suppose (bo (aca))o (bo(aoca)), a€ f<(J) for all z,y € X. Then we get

f((bo(aca))o(bo(aca))) = (f(b)o((f(a)o f(a)))o(f(b)o((f(a)of(a))), fla)eE J.

Thus by the hypothesis, f(b) € J, i.e., b€ f<(J). So the condition (SSKUI5) holds.
Hence f<(J) is an SSKU-ideal of X.
(6) The proof is similar to one of Proposition 4.16(5). O
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Lemma 4.21. Let f : (X,0,0) — (Y, o/,Ol) be an SSKU-homomorphism. Then
Kerf is an SSKU-ideal of X.

Proof. From Proposition 4.20(1), it is obvious that 0 € Kerf. Suppose the following
condition hold: for all a,b € X,

(bo(aca))o(bo(aoca)), a€ Kerf.
Then f((bo (aoa))o(bo(aca)) =0 and f(a) = 0. Since f is an SSKU-
homomorphism, we have
f((bo(aca))o(bo(aca))=(f(b)o (fla)o fla))o (f(b)e (fla)o f(a) =0

Thus f(b) < f(a) = 0. By Proposition 3.7(13), f(b) = 0. So b € Kerf. Hence
Kerf is an SSKU-ideal of X. O

Proposition 4.22. Let f: (X,0,0) — (Y, o',()/) be an SSKU-homomorphism. We
define binary relation ~gery on X as follows: for all x,y € X,
2 ~icers y i and only if (w0 (yoy))o (w0 (yoy)), (yo(wom))o(yo(20)) E~rery -

If X andY are associative SSKU -algebras, then Kerf is an SSKU -congruence on
X.

Proof. The proof is similar to Proposition 4.7. g

We obtain the following result, which has a different structure than Proposition
4.10.

Proposition 4.23. Let (X,0,0) and (Y, o, Ol) be associative SSKU -algebras and f :
X =Y an SSKU-homomorphism. We define the binary operation o on X/Kerf
as follows: for all z,y € X,
Cy 0 Cy = Croy.

Then (X/Kerf,o',Cy) is an SSKU-algebra, where Cpy = {y € X : y ~Kerf T}

Furthermore, If m : X — (X/Kerf, 0/76’0) is the canonical mapping defined as
follows: for each x € X,

7(x) = Cy,

then 7 is an SSKU -epimorphism.

In this case, (X/Kerf, o,,Co) is called a quotient Sheffer stroke KU -algebra
(briefly, quotient SSKU-algebra) of X induced by Kerf.

Proof. 1t is clear that Cy = Ker f. The proof of the first part follows from Definition
3.1 and the definition of o'. The proof of the second part is easy. O

Proposition 4.24. Let (X,0,0) and (Y, 0/70/) are associative SSKU -algebras and
f: X =Y an SSKU-epimorphism. Then there is a mapping ¢ : (X/Kerf, o, Co) —
(Y, o, O') as follows: for each C, € X/Kerf,

p(Ca) = f(x)
such that it is an SSKU-isomorphism. Furthermore, p om = f.

Proof. The proof is similar to Proposition 4.17. O
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Proposition 4.25. Let X,Y,Z be associative SSKU-algebras, f : X — Y an
SSKU-epimorphism and g : X — Z an SSKU-homomorphism. If Kerf C Keryg,
then there is a unique SSKU-homomorphism ¢ : Y — Z such that po f = g.

Proof. Let z € Y. Since f is surjective, there z, € X such that f(z,) = y. Then we
can define a mapping ¢ : Y — Z as follows: for each y € Y,

e(y) = g(zy).
Suppose a = b for all a,b € Y. Since f is surjective, there are x,,x, € X such
that a = f(z,) and b = f(zp). Then f(z,) = f(zp). Thus by Lemma 3.5(1), we have

b)-
f((wao(zpoxp))o(wao(zpoxy))) = (f(wa)o(f(zp)of (wp)))o(f(za)o(f(xs)of (1)) =0,
f((zpo(ra0za))o(zho(2007a))) = (f(26)o(f (2a)of (xa)))o(f(xp)o(f(xa)of (xa))) = 0,

So we get
(g0 (xpoxp))o(xgo(zpom)) € Kerf,
(20 (24 04)) 0 (21 0 (24 0 24)) € Kerf.
Since Kerf C Kerg and g is an SSKU-homomorphism, we have

(9(za) o (g(xp) 0 g(w1))) © (9(wa) © (g(zp) 0 g(2s))) = O,

(g(zb) © (9(xa) © g(xa))) 0 (9(x3) © (9(2a) © g(za))) = 0.
By (SSKUs), g(zq) = g(xp), i.e., ¢(a) = p(b). Hence ¢ is well-defined.
The proofs of which p o f = f, ¢ is an SSKU-homomorphism and is unique
follow Theorem 3 in [30]. O

5. CONCLUSIONS

By defining the concept of KU-ideals of an SSKU-algebra, we obtained some of
its properties. In particular, we dealt with a relationship between S.SKU-ideals|and
classical KU-ideals of a KU-algebra. Also, we discussed some properties of the
images and the preimages of K.SSU-ideals of an SSKU-algebra under an SSKU-
homomorphism.

In the future, we expect to apply SSKU-algebra to fuzzy sets, bipolar fuzzy sets,
hesitant fuzzy sets, Pythagorean fuzzy sets and neutrosophic sets etc.
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